Континентальный тип земной коры

Глубина и изменение температуры земной коры

Поверхностный слой прогревается солнечным теплом. Это гелиометрическая оболочка. Она испытывает сезонные колебания температуры. Средняя мощность слоя составляет около 30 м.

Ниже находится слой, еще более тонкий и хрупкий. Его температура постоянна и приблизительно равна среднегодовой, характерной для этой области планеты. В зависимости от континентального климата глубина этого слоя увеличивается.Еще глубже в земной коре находится еще один уровень. Это геотермический слой. Строение земной коры предусматривает его наличие, а его температура определяется внутренним теплом Земли и возрастает с глубиной.

Повышение температуры происходит за счет распада радиоактивных веществ, которые входят в состав горных пород. В первую очередь это радий и уран.

Геометрический градиент — величина нарастания температуры в зависимости от степени увеличения глубины слоев. Этот параметр зависит от разных факторов. Строение и типы земной коры влияют на него, так же как и состав горных пород, уровень и условия их залегания.

Тепло земной коры является важным энергетическим источником. Его изучение очень актуально на сегодняшний день.

Состав и строение земной коры

Для того чтобы говорить о том, какие элементы входят в состав литосферы, нужно дать некоторые понятия.

Земная кора — это самая внешняя оболочка литосферы. Ее плотность меньше в два раза по сравнению со средней плотностью планеты.

От мантии земная кора отделена границей М, о которой уже говорилось выше. Так как процессы, происходящие на обоих участках, взаимно влияют друг на друга, их симбиоз принято называть литосферой. Это означает «каменная оболочка». Ее мощность колеблется в пределах 50-200 километров.

Ниже литосферы расположена астеносфера, которая обладает менее плотной и вязкой консистенцией. Ее температура составляет около 1200 градусов. Уникальной особенностью астеносферы является возможность нарушать свои границы и проникать в литосферу. Она является источником вулканизма. Здесь находятся расплавленные очаги магмы, которая внедряется в земную кору и изливается на поверхность. Изучая эти процессы, ученые смогли сделать много удивительных открытий. Именно так изучалось строение земной коры. Литосфера была сформирована много тысяч лет назад, но и сейчас в ней происходят активные процессы.

Медленные колебания

Во время ледникового периода окутанная льдами земная кора сильно прогнулась. По мере таяния ледников поверхность стала подниматься. Увидеть происходящие в древние времена события можно по береговой линии суши. Из-за движения земной коры география морей изменялась, формировались новые берега. Особенно четко видны изменения на берегу Балтийского моря — и на суше, и на высоте до двухсот метров.

Сейчас под большими массами льда находятся Гренландия и Антарктида. По данным ученых, поверхность в этих местах прогнута почти на треть толщины ледников. Если предположить, что когда-нибудь придет время и льды растают, то перед нами появятся горы, равнины, озера и реки. Постепенно грунт будет подниматься.

Методы изучения внутреннего строения и состава Земли

Методы изучения внутреннего строения и состава Земли можно разделить на две основные группы: геологические методы и геофизические методы. Геологические методы базируются на результатах непосредственного изучения толщ горных пород в обнажениях, горных выработках (шахтах, штольнях и пр.) и скважинах. При этом в распоряжении исследователей имеется весь арсенал  методов исследования строения и состава, что определяет высокую степенью детальности получаемых результатов. Вместе с тем, возможности этих методов при изучении глубин планеты весьма ограничены – самая глубокая в мире скважина имеет глубину лишь -12262 м (Кольская сверхглубокая в России), ещё меньшие глубины достигнуты при бурении океанического дна (около -1500 м, бурение с борта американского исследовательского судна «Гломар Челленджер»). Таким образом, непосредственному изучению доступны глубины, не превышающие 0,19% радиуса планеты.

Сведения о глубинном строении базируются на анализе косвенных данных, полученных геофизическими методами, главным образом закономерностей изменения с глубиной различных физических параметров (электропроводности, механической добротности и т.д.), измеряемых при геофизических исследованиях. В основу разработки моделей внутреннего строения Земли положены в первую очередь результаты сейсмических исследований, опирающиеся на данные о закономерностях распространения сейсмических волн. В очагах землетрясений и мощных взрывов возникают сейсмические волны – упругие колебания. Эти волны разделяются на объёмные – распространяющиеся в недрах планеты и «просвечивающие» их подобно рентгеновским лучам, и поверхностные – распространяющиеся параллельно поверхности и «зондирующие» верхние слои планеты на глубину десятки – сотни километров.
Объемные волны, в свою очередь, разделяются на два вида – продольные и поперечные. Продольные волны, имеющие большую скорость распространения, первыми фиксируются сейсмоприёмниками, их называют первичными или Р-волнами (от англ. рrimary — первичные), более «медленные» поперечные волны называют S-волны (от англ. secondary — вторичные)

Поперечные волны, как известно, обладают важной особенностью – они распространяются только в твёрдой среде

На границах сред с разными свойствами происходит преломление волн, а на границах резких изменений свойств, помимо преломлённых, возникают отраженные и обменные волны. Поперечные волны могут иметь смещение, перпендикулярное плоскости падения (SH-волны) или смещение, лежащее в плоскости падения (SV-волны). При переходе границы сред с разными свойствами волны SH испытывают обычное преломление, а волны SV, кроме преломлённой и отражённой SV-волн, возбуждают P-волны. Так возникает сложная система сейсмических волн, «просвечивающих» недра планеты.

  Анализируя закономерности распространения волн можно выявить неоднородности в недрах планеты — если на некоторой глубине фиксируется скачкообразное изменение скоростей распространения сейсмических волн, их преломление и отражение, можно заключить, что на этой глубине проходит граница внутренних оболочек Земли, различающихся по своим физическим свойствам.

Строение океанической земной коры

Данная часть литосферы преимущественно состоит из базальтовых пород. Строение океанической земной коры изучено не так досконально, как континентальное. Теория тектонических плит объясняет, что океаническая земная кора является относительно молодой, а самые ее последние участки можно датировать поздней юрой.Ее толщина практически не изменяется со временем, так как она определяется количеством расплавов, выделяющихся из мантии в зоне срединно-океанических хребтов. На нее существенно влияет глубина осадочных слоев на дне океана. В наиболее объемных участках она составляет от 5 до 10 километров. Данный вид земной оболочки относится к океанической литосфере.

Шкала землетрясений

При сообщениях о землетрясениях, мы слышим упоминание о баллах по шкале Рихтера. Единица ее измерения – это магнитуда: физическая величина, обозначающая энергию землетрясения. С каждым баллом сила энергии возрастает почти в тридцать раз.

Но чаще всего применяется шкала относительного типа. Оба варианта оценивают разрушающее действие толчков на постройки и людей. По этим критериям колебания земной коры от одного до четырех баллов практически не замечаются людьми, правда, могут раскачиваться люстры на верхних этажах здания. При показателях от пяти до шести баллов на стенах зданий возникают трещины, лопаются стекла. При девяти баллах рушится фундамент, падают линии электропередач, а землетрясение в двенадцать баллов способно стереть целые города с лица Земли.

Характеристики отдельных видов полезных ископаемых

По составу и особенностям применения различают:

  1. Горючие (уголь, нефть, газ).
  2. Рудные. Они включают радиоактивные (радий, уран) и благородные металлы (серебро, золото, платина). Есть руды черных (железо, марганец, хром) и цветных металлов (медь, олово, цинк, алюминий).
  3. Нерудные полезные ископаемые играют существенную роль в таком понятии, как строение земной коры. География их обширна. Это неметаллические и негорючие горные породы. Это строительные материалы (песок, гравий, глина) и химические вещества (сера, фосфаты, калийные соли). Отдельный раздел посвящен драгоценным и поделочным камням.

Распределение полезных ископаемых по нашей планете напрямую зависит от внешних факторов и геологических закономерностей.

Так, топливные полезные ископаемые в первую очередь добываются в нефтегазоносных и угольных бассейнах. Они имеют осадочное происхождение и формируются на осадочных чехлах платформ. Нефть и уголь крайне редко залегают вместе.

Рудные полезные ископаемые чаще всего соответствуют фундаменту, выступам и складчатым областям платформенных плит. В таких местах они могут создавать огромные по протяженности пояса.

Землетрясения

В отдельных уголках планеты происходят сильные движения земной коры, которые мы называем землетрясениями. Они возникают в результате толчков в глубинах Земли: за доли секунд или секунды земля опускается или поднимается на сантиметры или даже метры. В результате колебаний происходит изменение расположения одних участков коры относительно других в горизонтальных направлениях. Причиной движения является разрыв или смещение земли, происходящий на большой глубине. Это место в недрах планеты называют очагом землетрясения, а эпицентр находится на поверхности, где люди ощущают тектоническое движения земной коры. Именно в эпицентрах происходят самые сильные толчки, идущие снизу вверх, а затем расходящиеся в стороны. Сила землетрясений измеряется в баллах – от одного до двенадцати.

Наука, изучающая движение земной коры, а именно землетрясения – это сейсмология. Для измерения силы толчков применяют специальное устройство – сейсмограф. Он в автоматическом режиме измеряет и записывает любые, даже самые маленькие колебания земли.

Мантия Земли

Считается, что она состоит в основном из богатой оливином породы. Ее температура может быть разной, что зависит от глубины. Самые низкие ее показатели непосредственно под корой. Самая высокая отмечается при контакте вещества мантии с тепловыделяющим ядром. Устойчивое повышение температуры с увеличением глубины носит название геотермического градиента. Эта физическая величина обуславливает разное поведение породы, на основании чего мантия разделяется на две различные зоны.

Скалы в верхней части мантии холодные и хрупкие. Благодаря этому они могут разрушаться под воздействием напряжения и вызывать землетрясения. В нижней части камни горячие и мягкие (но не расплавленные). Они не разрушаются под воздействием внешних сил, а растекаются.

Движения разрывного типа

Если горные породы не обладают достаточной прочностью, чтобы выдержать воздействие внутренних сил, начинается их движение. В таких случаях образуются трещины, разломы с вертикальным типом смещения грунта. Опущенные участки (грабены) чередуются с горстами — поднявшимися горными образованиями. Примером таких разрывных движений являются Алтайские горы, Аппалачи и т.д.

Глыбовые и складчатые горы имеют различия во внутреннем строении. Для них характерны широкие отвесные склоны, долины. В некоторых случаях опущенные места заполняются водой, образуя озера. Одним из самых знаменитых озер России является Байкал. Оно образовалось в результате разрывного движения земли.

Что такое тектонические структуры

Они являются большими участками земной коры, их размеры ограничивают глубинные разломы. Изучением строения и движения земной коры занимается тектоника.

Следует отметить, что тектонические структуры, такие как платформы и подвижные пояса, являются самыми крупными. Платформа представляет собой относительно устойчивый участок земной коры. Поверхность ее довольно плоская. Ее характерной чертой является двухслойное строение: она состоит из кристаллического фундамента, сложенного древними твердыми породами (он расположен снизу), и осадочного чехла, который сформировали более поздние отложения. В тектонической структуре России, например, выделяют Сибирскую платформу и Восточно-Европейскую плиту.

На платформе имеются щиты и плиты. Первый представляет собой приподнятый до земной поверхности участок кристаллического фундамента, частично покрытый осадочным чехлом. Вторая является таким участком платформы, фундамент которого погружен на глубину, его полностью покрывает осадочный чехол. Подвижной пояс — это удлиненный участок земной коры, в пределах которого происходили и происходят движения земной коры.

Таким образом можно считать, что такие тектонические структуры земной коры являются основными. Их строение обуславливает состав элементов поверхности планеты. Например, тектоническая структура равнины, может включать фундамент и осадочный чехол.

Процессы в земной коре

Конвергентные границы тектонических структур (то есть между теми, которые движутся в разные стороны) вызывают сжатие земной коры, что приводит к ее складчатости, чрезмерному поднятию или утолщению. Расходящиеся границы вызывают рифтинг (образование впадин), понижение или утончение. Изучение процессов земной коры позволяет выявить тектоническую структуру рельефа.

Столкновение плиты морского дна с континентальной платформой обычно приводит к возникновению горных систем, таких как Скалистые горы (расположены вдоль западного побережья Северной Америки), Анды и Аппалачи. Столкновение двух континентальных плит также создает горы, такие как Гималаи на границе Индийского и Азиатского субконтинентов.

Формирование

Тектоника плит изменяет положение и форму континентов и океанов за период, составляющий примерно 4 миллиарда лет. Гидротермальные процессы сконцентрировали большинство известных металлических рудных тел вдоль границ конвергентных плит, например, золотые месторождения Калифорнии и Аляски.

Гидротермальные процессы также активны на границах расходящихся плит, таких как срединно-атлантический хребет и Красное море.

Кроме того, границы конвергентных плит создают условия, которые позволяют накапливать нефть в море или на суше у берега. Поскольку скалы изгибаются за счет движения плит, образуются ловушки для углеводородов. Тепло и давление, создаваемые опадающими плитами, помогают высвобождать нефть из пород, оставляя ее свободной для миграции в такие ловушки.

Понижение, поднятие и горообразование – термины, используемые геологами, чтобы описать движение одной части тектонической структуры относительно другой.

Причиной перемещений является напряжение, создаваемое относительным движением плит континентального и морского дна. Как правило, это очень медленные процессы, поэтому ученым необходимо делать чрезвычайно точные наблюдения, чтобы увидеть их результаты. Например, Скалистые горы все еще растут со скоростью несколько дюймов на сотню лет из-за скольжения Тихоокеанской плиты относительно западного края Североамериканской. Соответственно, все эти процессы обуславливают взаимосвязь формы рельефа и тектонической структуры.

Развитие теорий

Тектоника плит и миграция континентов — центральная особенность современной теории строения Земли. Впервые эта концепция была упомянута Антонио Снайдер-Пеллегрини в 1858 году, который приписал ее библейскому потопу. В 1912 году Альфред Вегенер выдвинул теорию, которая учитывала движение континентов и явное блуждание Северного и Южного полюсов. Однако только в середине 1960-х годов она была принята геологическим сообществом.

Первоначально теория была названа термином «дрейф континентов». Однако выяснилось, что многие другие части поверхности также движутся и не перемещают на себе материки, поэтому термин «тектоника плит» является предпочтительным, так как он более правильно описывает реальную ситуацию.

Разведка дна океана, проведенная в 1960-х годах в рамках проекта глубоководного бурения, показала, что система хребтов окружает земной шар примерно посередине каждого океана. Скалы в этих подводных горных системах очень молоды по сравнению с остальной частью морского дна. После изучения морского дна теория Вегенера была расширена. В нее было включено движение пород под континентами. Этот процесс назвали субдукцией.

Океаническая земная кора

Океаническая кора расположена там, где глубина моря больше $ 4$ км, а это значит, что она занимает не все пространство океанов. Остальная площадь покрыта корой промежуточного типа. Кора океанического типа устроена не так, как континентальная кора, хотя тоже разделяется на слои. В ней практически совсем отсутствует гранитный слой, а осадочный очень тонкий и имеет мощность менее $1$ км. Второй слой пока еще неизвестен, поэтому его называют просто вторым слоем. Нижний, третий слой – базальтовый. Базальтовые слои континентальной и океанической коры похожи скоростями сейсмических волн. Базальтовый слой в океанической коре преобладает. Как говорит теория тектоники плит, океаническая кора постоянно формируется в срединно-океанических хребтах, потом она от них отходит и в областях субдукции поглощается в мантию. Это свидетельствует о том, что океаническая кора является относительно молодой. Наибольшее количество зон субдукции характерно для Тихого океана, где с ними связаны мощные моретрясения.

Определение 1

Субдукция – это опускание горной породы с края одной тектонической плиты в полурасплавленную астеносферу

В том случае, когда верхней плитой является континентальная плита, а нижней – океаническая – образуются океанические желоба.
Её толщина в разных географических зонах варьируется от $5$-$7$ км. С течением времени толщина океанической коры практически не изменяется. Связано это с количеством расплава, выделяющегося из мантии в срединно-океанических хребтах и толщиной осадочного слоя на дне океанов и морей.

Осадочный слой океанической коры небольшой и редко превышает толщину в $0,5$ км. Состоит он из песка, отложений останков животных и осажденных минералов. Карбонатные породы нижней части на большой глубине не обнаруживаются, а на глубине больше $4,5$ км карбонатные породы замещаются красными глубоководными глинами и кремнистыми илами.

Базальтовые лавы толеитового состава сформировали в верхней части базальтовый слой, а ниже лежит дайковый комплекс.

Определение 2

Дайки – это каналы, по которым базальтовая лава изливается на поверхность

Базальтовый слой в зонах субдукции превращается в экголиты, которые погружаются в глубину, потому что имеют большую плотность окружающих мантийных пород. Их масса составляет около $7$ % от массы всей мантии Земли. В пределах базальтового слоя скорость продольных сейсмических волн составляет $6,5$-$7$ км/сек.

Средний возраст океанической коры составляет $100$ млн. лет, в то время как самые старые её участки имеют возраст $156$ млн. лет и располагаются во впадине Пиджафета в Тихом океане.Сосредоточена океаническая кора не только в пределах ложа Мирового океана, она может быть и в закрытых бассейнах, например, северная впадина Каспийского моря. Океаническаяземная кора имеет общую площадь $306$ млн. км кв.

Земная кора в научном понимании представляет собой самую верхнюю и твердую геологическую часть оболочки нашей планеты.

Научные исследования позволяют изучить ее досконально. Этому способствуют многократные бурения скважин как на континентах, так и на океанском дне. Строение земли и земной коры на различных участках планеты отличаются и и по составу, и по характеристикам. Верхней границей земной коры является видимый рельеф, а нижней — зона разделения двух сред, которая также известна как поверхность Мохоровичича. Часто ее называют просто «граница М». Это наименование она получила благодаря хорватскому сейсмологу Мохоровичичу А. Он долгие годы наблюдал за скоростью сейсмических движений в зависимости от уровня глубины. В 1909 году он установил наличие разницы между земной корой и раскаленной мантией Земли. Граница М пролегает на том уровне, где скорость сейсмических волн повышается с 7.4 до 8.0 км/с.

Горные породы по группам

1. Магматические. Название говорит само за себя. Они возникают из остывшей магмы, вытекающей из жерла древних вулканов. Строение этих пород напрямую зависит от скорости застывания лавы. Чем она больше, тем меньше кристаллы вещества. Гранит, например, сформировался в толще земной коры, а базальт появился в результате постепенного излияния магмы на ее поверхность. Многообразие таких пород довольно велико. Рассматривая строение земной коры, мы видим, что она состоит из магматических минералов на 60 %.

2. Осадочные. Это породы, которые стали результатом постепенного отложения на суше и дне океана обломков тех или иных минералов. Это могут быть как рыхлые компоненты (песок, галька), сцементированные (песчаник), остатки микроорганизмов (каменный уголь, известняк), продукты химических реакций (калийная соль). Они составляют до 75 % всей земной коры на материках.По физиологическому способу образования осадочные породы делятся на:

  • Обломочные. Это остатки различных горных пород. Они разрушались под воздействием природных факторов (землетрясение, тайфун, цунами). К ним можно отнести песок, гальку, гравий, щебень, глину.
  • Химические. Они постепенно образуются из водных растворов тех или иных минеральных веществ (соли).
  • Органические или биогенные. Состоят из останков животных или растений. Это горючие сланцы, газ, нефть, уголь, известняк, фосфориты, мел.

3. Метаморфические породы. В них могут превращаться другие компоненты. Это происходит под воздействием изменяющейся температуры, большого давления, растворов или газов. Например, из известняка можно получить мрамор, из гранита — гнейс, из песка — кварцит.

Минералы и горные породы, которые человечество активно использует в своей жизнедеятельности, называются полезными ископаемыми. Что они собой представляют?

Это природные минеральные образования, которые влияют на строение земли и земной коры. Они могут использоваться в сельском хозяйстве и промышленности как в естественном виде, так и подвергаясь переработке.

Вулканизм

Вулканизм – это процессы, во время которых происходит движение магмы в верхних слоях мантии и ее приближение к земной поверхности. Типичным проявлением вулканизма является образование геологических тел в осадочных породах, а также выход лавы на поверхность с формированием специфического рельефа.

Вулканизм и движение земной коры – это два взаимосвязанных явления. В результате движения земной коры образуются геологические возвышенности или вулканы, под которыми проходят трещины. Они настолько глубокие, что по ним поднимается лава, горячие газы, пары воды, а также обломки горных пород. Колебания земной коры провоцируют извержения лавы с выбросом огромного количества пепла в атмосферу. Эти явления оказывают сильное влияние на погоду, изменяют рельеф вулканов.

Тектонические движения земной коры происходят под воздействием радиоактивной, химической и тепловой энергий. Эти движения приводят к различным деформациям земной поверхности, а также вызывают землетрясения и извержения вулканов. Все это приводит к изменению рельефа в горизонтальном или вертикальном направлении.

На протяжении долгих лет ученые изучают эти явления, разрабатывают аппараты, позволяющие регистрировать любые сейсмологические явления, даже самые незначительные колебания земли. Полученные данные помогают разгадать тайны Земли, а также предупредить людей о предстоящих извержениях вулканов. Правда, предугадать предстоящее сильное землетрясение пока не удается.

Структура

Земля разделена примерно на восемь больших, жестких, но смещающихся плит и множество малых. Основные плиты поддерживают одно (или более) массивное континентальное плато, часто называемое кратоном.

Существует три типа границы основных тектонических структур, а именно:

  • Расходящаяся (межпланетный рифт).
  • Сдвиговая (где плиты скользят друг за другом).
  • Сходящаяся (где сталкиваются две плиты, одна из которых обычно подвергается субдукции и поглощению).

Рифтинг создает срединно-океанические хребты и расширяет океаны. Субдукция сужает океан, а изгиб пластин создает прибрежные горы.

Складкообразовательные движения

Если уровни горных пород пластичны, то во время горизонтального движения начинается смятие и сбор горных пород в складки. Если направление силы вертикальное, то породы смещаются вверх и вниз, и только при горизонтальном движении наблюдается складкообразование. Размеры и внешний вид складок может быть любым.

Складки в земной коре образуются на достаточно больших глубинах. Под воздействием внутренних сил они поднимаются наверх. Подобным образом возникли Альпы, Кавказские горы, Анды. В этих горных системах складки отчетливо видны на тех участках, где они выходят на поверхность.

Континентальная кора

Литосфера взаимодействует с атмосферой, гидросферой и биосферой. В процессе синтеза они образуют самую сложную и реакционно активную оболочку Земли. Именно в тектоносфере происходят процессы, изменяющие состав и строение этих оболочек.Литосфера на земной поверхности не однородна. Она имеет несколько слоев.

  1. Осадочный. Он в основном образуется горными породами. Здесь преобладают глины и сланцы, а также широко распространены карбонатные, вулканогенные и песчаные породы. В осадочных слоях можно встретить такие полезные ископаемые, как газ, нефть и каменный уголь. Все они имеют органическое происхождение.
  2. Гранитный слой. Он состоит из магматических и метаморфических пород, которые наиболее близки по своей природе к граниту. Этот слой встречается далеко не везде, наиболее ярко он выражен на континентах. Здесь его глубина может составлять десятки километров.
  3. Базальтовый слой образуют породы, близкие к одноименному минералу. Он более плотный, чем гранит.

Ядро Земли

Считается, что оно состоит из сплава железа и никеля. Этот состав основан на расчетах его плотности. Также учитывается тот факт, что многие метеориты (которые считаются частями внутренней части планетарного тела) представляют собой железо-никелевые сплавы. Ядро является своеобразной печкой Земли, потому что оно содержит радиоактивные материалы, выделяющие тепло при расщеплении на более стабильные вещества.

Оно делится на две разные зоны. Внешнее ядро ​​жидкое, так как температура там достаточная для плавления железо-никелевого сплава. Внутреннее ядро ​​является твердым, хотя его температура выше, чем у внешнего. Здесь огромное давление, создаваемое весом вышележащих пород, достаточно сильное, чтобы плотно сжать атомы и предотвратить его трансформацию в жидкое состояние.

Образование геосинклиналей

Источником осадков для этих тектонических структур является континентальный кратон. В примере с Северной Америкой большая часть осадков с материка в конечном итоге сбрасывается в Атлантический океан и Мексиканский залив.

Геосинклинали откладываются вдоль заднего края. Если континентальная плита меняет свое относительное направление движения, а задняя кромка становится передней, геосинклиналь сжимается и складывается. Это произошло в восточной части Северной Америки и привело к складыванию Аппалачей. Седиментация для формирования геосинклинали представляет собой основной геологический цикл, который развивается в течение нескольких сотен миллионов лет и может повторяться несколько раз.

Метод измерения теплового потока для изучения строения пла­нет

Еще один путь изучения глубинного строения Земли — это изучение ее теплового потока. Известно, что Земля, го­рячая изнутри, отдает свое тепло. О нагреве глубоких гори­зонтов свидетельствуют извержения вулканов, гейзеры, го­рячие источники. Тепло — главный энергетический источник Земли.

Прирост температуры с углублением от поверхно­сти Земли в среднем составляет около 15° С на 1 км. Это значит, что на границе литосферы и астеносферы, располо­женной примерно на глубине 100 км, температура должна быть близкой к 1500° С. Установлено, что при такой темпера­туре происходит плавление базальтов. Это означает, что астеносферная оболочка может служить источником магмы ба­зальтового состава.

С глубиной изменение температуры про­исходит по более сложному закону и находится в зависи­мости от изменения давления. Согласно расчетным данным, на глубине 400 км температура не превышает 1600° С и на границе ядра и мантии оценивается в 2500—5000° С.

Установлено, что выделение тепла происходит постоян­но по всей поверхности планеты. Тепло — важнейший физи­ческий параметр. От степени нагрева горных пород зависят некоторые их свойства: вязкость, электропроводность, магнитность, фазовое состояние. Поэтому по термическому состоянию можно судить о глубинном строении Земли.

Изме­рение температуры нашей планеты на большой глубине — задача технически сложная, так как измерениям доступны лишь первые километры земной коры. Однако внутренняя температура Земли может быть изучена косвенным путем при измерениях теплового потока.

Несмотря на то, что основным источ­ником тепла на Земле является Солнце, суммарная мощность теплового потока нашей планеты превышает в 30 раз мощность всех электростанций Земли.

Измерения показали, что средний тепловой поток на кон­тинентах и в океанах одинаков. Этот результат объясняется тем, что в океанах большая часть тепла (до 90%) поступает из мантии, где интенсивнее происходит процесс переноса вещества движущимися потоками — конвекцией.

Внутренняя температура Земли. Чем ближе к ядру, тем больше наша планета походит на Солнце!

Конвек­ция — процесс, при котором разогретая жидкость расширяет­ся, становясь легче, и поднимается, а более холодные слои опускаются. Поскольку мантийное вещество ближе по сво­ему состоянию к твердому телу, конвекция в нем протека­ет в особых условиях, при невысоких скоростях течения ма­териала.

Какова же тепловая история нашей планеты? Ее пер­воначальный разогрев, вероятно, связан с теплом, образован­ным при соударении частиц и их уплотнении в собственном поле силы тяжести. Затем тепло явилось результатом радио­активного распада. Под воздействием тепла возникла слои­стая структура Земли и планет земной группы.

Радиоактив­ное тепло в Земле выделяется и сейчас. Существует гипоте­за, согласно которой на границе расплавленного ядра Земли продолжаются и поныне процессы расщепления вещества с выделением огромного количества тепловой энергии, разо­гревающей мантию.

Сейсмические пояса

Как известно, земная кора образована литосферными плитами. На пограничных участках этих образований наблюдается высокая подвижность, возникают частые землетрясения, образуются вулканы. Эти участки называются сейсмологическими поясами. Их протяженность составляет тысячи километров.

Ученые выделили два пояса-гиганта: меридиональный Тихоокеанский и широтный Средиземноморско-Трансазиатский. Пояса сейсмологической активности полностью соответствует активному горообразованию и вулканизму.

В отдельную категорию ученые выделяют первостепенные и второстепенные зоны сейсмичности. Ко вторым относятся Атлантический океан, Арктика, район Индийского океана. Примерно 10 % движений земной коры происходит в этих районах.

Первичные зоны представлены районами с очень высокой сейсмической активностью, сильными землетрясениями: Гавайские острова, Америка, Япония и т. д.

Химический состав Земли

Изучая оболочки нашей планеты, ученые делали интересные и даже потрясающие выводы. Особенности строения земной коры делают ее схожей с такими же участками на Марсе и Венере. Более чем 90 % составляющих элементов ее представлены кислородом, кремнием, железом, алюминием, кальцием, калием, магнием, натрием. Сочетаясь между собой в различных комбинациях, они образуют однородные физические тела — минералы. Они могут войти в состав горных пород в разных концентрациях. Строение земной коры весьма неоднородно. Так, горные породы в обобщенном виде представляют собой агрегаты более-менее постоянного химического состава. Это самостоятельные геологические тела. Под ними понимается четко очерченная область земной коры, имеющая в своих границах одинаковое происхождение, возраст.

Изучение геологических процессов

Современное расположение слоев горных пород в коре определяют исторические геологические события. Они варьируются от медленных и постепенных, таких как эрозия и тектоника плит, до катастрофических, таких как метеорные удары или извержения вулканов. Эти процессы постоянно изменяют геометрию горных пород, составляющих земную кору. Данное явление наблюдается как на континентах, так и под океанами. Рельеф земной поверхности зависит от того, на какой тектонической структуре происходит его формирование.

Поверхностная кора довольно жесткая, но разбита на несколько пластин, которые могут свободно перемещаться по мантии. Около 75% поверхности Земли покрыто океанами, под каждым из которых находится одна или несколько пластин. Континенты представляют собой массы суши (преимущественно над уровнем моря), которые также состоят из одной или нескольких плит. Их движение относительно друг друга называется тектоникой плит. Эти процессы ученые начали подробно изучать более 150 лет назад.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector